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Abstract— Elliptical waveguides are currently finding

several applications, since they provide improved flex-

ibility with respect to circular waveguides and better
manufacturability and higher Q with respect to rect-

angular waveguides. Effective CAD of components in-
volving elliptical waveguides requires the efficient eval-

uation of the scattering parameters at the discontinuity

occurring between elliptical and circular or rectangular

waveguides,

In this study we present analytical formulas for the ef-

ficient CAD of a junction between a circular and an
elliptical waveguide of larger cross-section. Wit h re-

spect to current approaches, based on the numerical

evaluation of the coupling integrals, the analytical for-

mulae permits a significant reduction of computer time

of more than one order of magnitude.

We have implemented the above formulas and results

have been tested against published data and compared
with those obtained by numerical integration: in all
cases an almost perfect agreement is observed.

I. INTRODUCTION

Elliptical waveguides have recently found applica-

tion in a variety of microwave components: their use

has been proposed in dual mode filters [1], as low sen-

sitivity irises, as matching sections between circular

and rectangular waveguides, etc.. Waveguide disconti-

nuities involving elliptical structures have received lim-

ited attention so far: the case of the junction between

two confocal elliptical waveguides has been considered

in [2], the general step discontinuity between two el-

liptical waveguides has been studied in [3], while the

case of the junction between rectangular and elliptical

waveguides has been considered in [4] and [5]; junc-

tions between concentric elliptical and circular waveg-

uides have been investigated in [5] for cross-section of

the circular waveguide greater than that of the ellip-

tical waveguide. Elliptical waveguides radiating into

free space have been considered in [6] and, more re-

cently in [7], where a transition between a rectangular

waveguide and an elliptical one radiating into an half-

space was studied. In all the above cases a modal

solution of the discontinuity problem has been sought;

the advantages of such a solution in terms of efficiency

are well recognized. In [2], [5] the modal coupling CG
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Fig. 1. Junction between an elliptical and a circular waveguide.
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Elliptical coordinate system of semifocal length p.

efficient have been obtained by analytical formulas;

while in [3], [4] the evaluation of the coupling integrals

has required numerical integration. Analytical solu-

tions are extremely convenient since their use can sub-

stantially decrease the computation times; in several

cases the above discontinuities need to be optimized

with respect to the geometrical dimensions and it is

therefore apparent that, whenever feasible, the use of

analytical formulas is highly advisable. In this paper

we consider the junction of a circular and an elliptical

waveguide of larger cross-section (see Fig. 1). For this

case not only we have found an analytical solution for

the coupling coefficients, but the latter are provided by

a single term expression which does not require com-

putation of Mathieu functions. In the next section we

present the theoretical evaluation of the coupling CG

efficient; in section III we compare the results of the

proposed approach with published and reference data.
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II. THEORY

A. Modal analysis in circular and elliptical waveguides

Modal analysis of the step discontinuity between an

elliptical and a circular waveguide requires knowledge

of the relative modal spectra. The normalized poten-

tials of the modes of the circular waveguide, are well

know and are here repeated in order to introduce no-

tation (see also Fig. 1):

where

{

W if i=O
~; =

1 otherwise

In the above formulas the symbol prime (’) is re-

ferred to TM modes while the symbol (“) is referred

to TE modes; K~$) and K~~) are the cutoff wavenum-

ber for TiWi,j and TEi,j, r&pectively, and J{(x) is the

first derivative of a Bessel function of order i. More

over, from this point on, the superscript (c) denotes

circular waveguides, while (e) is referred to elliptical

waveguides.
Modal potentials for an elliptical waveguide are ex-

pressed as [8], [9]:

* ::O(Lm={
NC’e. (pK~$~)E, oce. (pK~,(&)E, q) 5 TE~m

NSe. (pK~$&)O, <)se. (pK~,(&)O, q) + TE$’m

(3)

Here ~ and q are the radial and angular coordinates

respectively of an elliptical coordinate system of the

same semifocal length p of the elliptical waveguide (see

Fig. 2). The functions cen ,Ce~ are respe~ively the

even Mathieu functions and the even modified Math-

ieu $unctions of order rq similarly, the functions se~,

Sen are the odd Mathieu functions and the odd mod-

ified h4athieu functions respectively. When the semi-

focal length of a elliptical coordinate system is fixed,

the functions Cen(pK$/#, ~), Sen (pK~kO, ~) depend

on the cutoff wavenumber K~,~‘e)E’O and on the ellip-

tical radial coordinate ~; analogously, the functions

(c)o ~) depend on the cutoff(c)E ~), sen (p~n,~ 7cen (p~n,m ~

(c)E/O
wavenumber Kn,m and on the elliptical angular GO

ordinate q; N is the mode normalization constant.

TM{m and TE{m are the even modes, while TiW~m

and TE~m are the odd modes.

With r’espect polarization, the meaning of even and

odd is somewhat analogous to sin and cos in circu-

lar waveguide (1), while for the elliptical waveguide

the odd modes are not the degenerate of even modes,

because of the lack of symmetry of the ellipse with

respect to the X and Y axis.

A useful expression of Mathieu functions is the fol-

lowing trigonometric expansion:

m (2~+71p)
ce2t+~P (pK$kE, q) = ~ A42~+~P cos(2r + np)q (4)

r=l)

m (21+np) .
se2t+mp (pK$LO, q) = ~ B2~+ttp sm(2r + np)q (5)

T=o

In the above equations np = O, 1, and the series

expansion coefficient A and B (depending on cutoff

wavenumber when p is fixed) are calculated as in [9],

[10].

B. Coupling integrals

The generic coupling integral is defined as:

J9p,q=~p~(e) . +) ds

c

(6)

where SC is the cross-section of the circular waveguide.

p stands for a particular n,m,’ or “,E or O combination,

while q stands for a particular i, j,’ and “, degenerate

or non degenerate combination.
In orde~ to evalua~e anal@ically the above coupl@g

integrals It 1s expedient to make use of the following

expression [9], [10] which provide an expansion of the

Mathieu functions in terms of the variables in the cir-
cular coordinate system:

Se2e+mp(pK~$&)0, oseze+np(@G,m “(e)ojd= (8)

fisej,+mP(pK~~&)O,O) x

~’o(-l)”+’B:j:) sin { (2T + nP) 4} J2r+rw (K;$&)Or)

where the coefficients A and B are those appear-

ing in (4) and (5), while n = 21 + np. The point

(t, q) in elliptical coordinates translates in a point

(v, ~) m cmndar coordinates: accordingly, by using eq.
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(8, 7) we can write the potential of elliptical wave-

guide in circular coordinates. We use the same nor-

malization of [10] for Mathieu functions: accordingly,

For deriving the analytical exp&sions of the cou-

pling coefficient we insert eq. (7) and (8) in (2) and

(3); then by substituting eq. (2, 3) and (1) into eq.

(6), we obtain the followings formulas: for TM modes:

Tj#+E
2e.+~p,~

– Tj@: , Tj@e)O2e+7tp,~
_ TM,(+

w’
with’ (i-rip) even

Op,q =

(-l)~wrNId’)2

K(.)2 _ K(c)2

For TE modes:

{& }:$$lJ’(K(e’rO)
TE(e)E

2e+np,772
_ TE(+ TE(e)O

21?+np,7n
– TE(c)d

‘w

tuith%’~i-’np) even

(–l)%JVK@2 A21+np

‘P’q = K(c)2_ K(e)2 { tinp Id “K(’)”O(K(C)TO)2 – ~2

Ji (K(c)~o) ,

x lJ,(K(cbo)l
Ji (K(ebo)

In the case of TM modes in elliptical waveguide and

TE in circular waveguide

T~(e)E
2e+7tp,m

_ TE(C)d T~(e)O
7

_ @

2t+np,m ,

with%’~i-np) even

9P, q =

{ $%’}<(-’)’N’T“(K(C)””)J’(K(’)””)(K(c) 7.0)2 - iz ]Ji(K(c)To)l

Finally, in all other cases:

OTHERWISE

9P,q = o (9)

Where h = 1 + %. K(e) and K(c) are the cutoff

wavenumber of the mode that we are considering in

the elliptical and in the circular waveguide, respec-

tively. The superscript (d) for circular modes denote

a degenerate mode.

III. RESULTS

Fig. 3 shows the reflection coefficient of a junction

between a circular waveguide and an elliptical wave-

guide with very small eccentricity (nearly circular).

We compare our reeults with data published in [2].
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Fig. 3. Return loss for a junction between an elliptical wave-

guide with eccentricity 0.0316 and a circular waveguide.
Comparison between [2] and results obtained by using the
analytical and numerical evaluation of the coupling coeffi-

cients. Geometrical dimensions are expressed in mm.
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Fig. 4. Return Loss for three different discentinuities between

elliptical and circular waveguides. Comparison between r~
suits obtained by using the analytical and numerical eval-

uation of the coupling coefficients. Geometrical dimensions
are expressed in mm.

In the same graphic we have plotted a simulation ob-

tained with a numerical solution of the coupling inte

gral. It is noted that an excellent agreement is present

between all the results presented; in particular the re-

turn loss obtained via analytical and numerical eval-

uation of the coupling coefficients coincides up to the

third decimal figure. However, the accuracy of the nu-

merical evaluation depends on a skilled choice of the

number of integration points. As far as computation

time are concerned it is noted that, for a single fre-

quency point evaluation of the reflection coefficient,

the code which employs analytical evaluation is about

40 times faster.
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Fig. 5. Return Loss for four different discontinuities between

elliptical and circular waveguides. In this graphic we have

plotted four curves reporting the variation of the return loss
with respect to variation of the minor axis of the elliptical

waveguide. Geometrical dimensions are expressed in mm.

In Fig. 4 we have plotted the reflection coefficient of

a junction between a circular waveguide with radius 1

cm and an elliptical waveguide of semiminor axis of 1

cm and varying semimajor axis. We have compared

these results with those obtained via numerical inte-

gration of the coupling integral. It can be seen that

a very good agreement is always present. It is also

apparent that the two approaches agree perfectly well

(curves relative to our analytical and numerical inte-

gration are coincident). However it is noted that the

computation time for a curve of 80 frequency point

and a scattering matrix of 100x5O modes, is 260 sec-

onds when using the analytical formulas, and about

2 hours when using numerical integration of coupling

integral (on a PC Pentium 133 MHz).

In Fig. 5 we have plotted four curves reporting the

variation of the return loss with respect to variation of

the minor axis of the elliptical waveguide. It is appar-

ent that the matching increases when the minor axis

of the ellipse becomes equal to the diameter of the

circular waveguide.

Finally, in Fig. 6 we have considered as fixed the

ellipse geometrical dimensions (reported in the inset)

and we have changed the diameter of the circular wave-

guide.

IV. CONCLUSION

We have presentd an elegant analytical solution

for the efficient CAD of junctions between a circular

waveguide and an elliptical waveguide of larger cross-

section. The coupling coefficients are evaluated by a

single term expression which does not require any sum-

mation, thus avoiding possible problems of relative
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Fig. 6. Return Loss for three different discontinuities between

elliptical and circular waveguides. In this graphic we have

considered as fixed the ellipse geometrical dimensiom and

we have changed the diameter of the circular waveguide.
Geometrical dimensions are expressed in mm.

convergence. Computed results have been compared

with published data and with other data obtained by

numerical integration; in all cases an almost perfect

agreement is observed. However, the code based on

the analytical expression of the coupling coefficients

has proven to be, for a typical case, about 40 times

faster than the code based on the numerical evalua-

tion of the coupling integrals.
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