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Abstract— Elliptical waveguides are currently finding
gseveral applications, since they provide improved flex-
ibility with respect to circular waveguides and better
manufacturabilty and higher Q with respect to rect-
angular waveguides, Effective CAD of components in-
volving elliptical waveguides requires the efficient eval-
uation of the scattering parameters at the discontinuity
occurring between elliptical and circular or rectangular
waveguides,

In this study we present analytical formulas for the ef-
ficient CAD of a junction between a circular and an
elliptical waveguide of larger cross-section. With re-
spect to current approaches, based on the numerical
evaluation of the coupling integrals, the analytical for-
mulas permits a significant reduction of computer time
of more than one order of magnitude.

We have implemented the above formulas and results
have been tested against published data and compared
with those obtained by numerical integration: in all
cases an almost perfect agreement is observed.

I. INTRODUCTION

Elliptical waveguides have recently found applica-
tion in a variety of microwave components: their use
has been proposed in dual mode filters [1], as low sen-
sitivity irises, as matching sections between circular
and rectangular waveguides, etc.. Waveguide disconti-
nuities involving elliptical structures have received lim-
ited attention so far: the case of the junction between
two confocal elliptical waveguides has been considered
in [2], the general step discontinuity between two el-
liptical waveguides has been studied in [3], while the
case of the junction between rectangular and elliptical
waveguides has been considered in [4] and [5]; junc-
tions between concentric elliptical and circular waveg-
uides have been investigated in [5] for cross-section of
the circular waveguide greater than that of the ellip-
tical waveguide. Elliptical waveguides radiating into
free space have been considered in {6] and, more re-
cently in [7], where a transition between a rectangular
waveguide and an elliptical one radiating into an half-
space was studied. In all the above cases a modal
solution of the discontinuity problem has been sought;
the advantages of such a solution in terms of efficiency
are well recognized. In [2], [5] the modal coupling co-
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Fig. 1. Junction between an elliptical and a circular waveguide.
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Fig. 2. Elliptical coordinate system of semifocal length p.

efficients have been obtained by analytical formulas;
while in [3], [4] the evaluation of the coupling integrals
has required numerical integration. Analytical solu-
tions are extremely convenient since their use can sub-
stantially decrease the computation times; in several
cases the above discontinuities need to be optimized
with respect to the geometrical dimensions and it is
therefore apparent that, whenever feasible, the use of
analytical formulas is highly advisable. In this paper
we consider the junction of a circular and an elliptical
waveguide of larger cross-section (see Fig. 1). For this
case not only we have found an analytical solution for
the coupling coeflicients, but the latter are provided by
a single term expression which does not require com-
putation of Mathieu functions. In the next section we
present the theoretical evaluation of the coupling co-
efficients; in section III we compare the results of the
proposed approach with published and reference data.
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II. THEORY
A. Modal analysis in circular and elliptical waveguides

Modal analysis of the step discontinuity between an
elliptical and a circular waveguide requires knowledge
of the relative modal spectra. The normalized poten-
tials of the modes of the circular waveguide, are well
know and are here repeated in order to introduce no-
tation (see also Fig. 1):
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In the above formulas the symbol prime (‘) is re-
ferred to 7'M modes while the symbol (") is referred
to T E modes; K, (Jc ) and K. ”gc) are the cutoff wavenum-
ber for TM; ; and T'E; ;, respectively, and J{(x) is the
first derivative of a Bessel function of order i. More-
over, from this point on, the superscript {c) denotes
circular waveguides, while (e) is referred to elliptical

waveguides.
Modal potentials for an elliptical waveguide are ex-
pressed as [8], [9]:

W72 () = { NCen(pKZ, E)cen(pKa” ) = TME,
" NSe n(PKn(e)o ﬁ)sen(PKn(;?aoy n) = TM'r?,m
(2)
IAdC >—{ NCEH(pKn‘“E,s)cen(pK”‘e)E,n) = TE
NSen(pKn 2, £)sen(pKn2°,n) = TE,
(3)

Here £ and 7 are the radial and angular coordinates
respectively of an elliptical coordinate system of the
same semifocal length p of the elliptical waveguide (see
Fig. 2). The functions ce, ,Ce, are respectively the
even Mathieu functions and the even modified Math-
ieu functions of order n; similarly, the functions se,,
Sey, are the odd Mathieu functions and the odd mod-
ified Mathieu functions respectively. When the semi-
focal length of a elliptical coordinate system is fixed,
the functions Cey (pKSIY ,5), Sen(p ()0 ¢) depend
on the cutoff wavenumber Kn m E/O and on the ellip-
tical radial coordinate &; analogously, the functions
cen(pKT(,,f,)f ,€), sen(pK,(quno ,&) depend on the cutoff

wavenumber Ky m (e) /© and on the elliptical angular co-
ordinate n; N 1s the mode normalization constant.
TMpZ,, and TEZ  are the even modes, while TMP,,
and TES,, are the odd modes.

With respect polarization, the meaning of even and
odd is somewhat analogous to sin and cos in circu-
lar waveguide (1), while for the elliptical waveguide
the odd modes are not the degenerate of even modes,
because of the lack of symmetry of the ellipse with
respect to the X and Y axis.

A useful expression of Mathieu functions is the fol-
lowing trigonometric expansion:
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In the above equations np = 0,1, and the series
expansion coefficient A and B (depending on cutoff
wavenumber when p is fixed) are calculated as in [9],
[10].

B. Coupling integrals

The generic coupling integral is defined as:

Upa = /S &) - eds (6)

where S, is the cross-section of the circular waveguide.
p stands for a particular n,m,’ or /,E or O combination,
while g stands for a particular i, j,’ and "/, degenerate

or non degenerate combination.
In order to evaluate analytically the above coupling
mtegrals it is expedient to make use of the following

expression [9], [10] which provide an expansion of the
Mathieu functions in terms of the variables in the cir-
cular coordinate system:
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where the coefficients A and B are those appear-
ing in (4) and (5), while n = 2 + np. The point
(&,m) in elliptical coordinates translates in a point
(r, ¢) in circular coordinates: accordingly, by using eq.
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(8, 7) we can write the potential of elliptical wave-
guide in circular coordinates. We use the same nor-
malization of [10] for Mathieu functions: accordingly,
cese1np(PKSI,0) = 1 and sely, ., (0KSIT,0) = 1.
For deriving the analytical expressions of the cou-
pling coefficient we insert eq. {7) and (8) in (2) and
(3); then by substituting eq. (2, 3) and (1) into eq.
(6), we obtain the followings formulas: for TM modes:

E o d
TMEE o —TMS , TMES, .~ TM)
with (i-np) even
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For TE modes:
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In the case of TM modes in elliptical waveguide and
TE in circular waveguide:

E d o
TM{ i = TES)  TMG 0 m = T
with (i-np) even

9p,q =

(~DrNir J(KOrp)
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Finally, in all other cases:

OTHERWISE

9pq =10 (9)

Where h = £+ =52 K(©) and K(© are the cutoff
wavenumber of the mode that we are considering in
the elliptical and in the circular waveguide, respec-
tively. The superscript (d) for circular modes denote
a degenerate mode.

Ji (K(e)’l‘o)

III. RESULTS

Fig. 3 shows the reflection coefficient of a junction
between a circular waveguide and an elliptical wave-
guide with very small eccentricity (nearly circular).
We compare our results with data published in 2]
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Fig. 3. Return loss for a junction between an elliptical wave-
guide with eccentricity 0.0316 and a circular waveguide.
Comparison between [2] and results obtained by using the
analytical and numerical evaluation of the coupling coeffi-
cients. Geometrical dimensions are expressed in mm.
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Fig. 4. Return Loss for three different discontinuities between
elliptical and circular waveguides. Comparison between re-
sults obtained by using the analytical and numerical eval-
uation of the coupling coefficients. Geometrical dimensions
are expressed in mm.

In the same graphic we have plotted a simulation ob-
tained with a numerical solution of the coupling inte-
gral. It is noted that an excellent agreement is present
between all the results presented; in particular the re-
turn loss obtained via analytical and numerical eval-
uation of the coupling coefficients coincides up to the
third decimal figure. However, the accuracy of the nu-
merical evaluation depends on a skilled choice of the
number of integration points. As far as computation
time are concerned it is noted that, for a single fre-
quency point evaluation of the reflection coefficient,
the code which employs analytical evaluation is about
40 times faster.
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Fig. 5. Return Loss for four different discontinuities between
elliptical and circular waveguides. In this graphic we have
plotted four curves reporting the variation of the return loss
with respect to variation of the minor axis of the elliptical
waveguide. Geometrical dimensions are expressed in mm.

In Fig. 4 we have plotted the reflection coefficient of
a junction between a circular waveguide with radius 1
cm and an elliptical waveguide of semiminor axis of 1
cm and varying semimajor axis. We have compared
these results with those obtained via numerical inte-
gration of the coupling integral. It can be seen that
a very good agreement is always present. It is also
apparent that the two approaches agree perfectly well
{curves relative to our analytical and numerical inte-
gration are coincident). However it is noted that the
computation time for a curve of 80 frequency point
and a scattering matrix of 100x50 modes, is 260 sec-
onds when using the analytical formulas, and about
2 hours when using numerical integration of coupling
integral (on a PC Pentium 133 MHz).

In Fig. 5 we have plotted four curves reporting the
variation of the return loss with respect to variation of
the minor axis of the elliptical waveguide. It is appar-
ent that the matching increases when the minor axis
of the ellipse becomes equal to the diameter of the
circular waveguide.

Finally, in Fig. 6 we have considered as fixed the
ellipse geometrical dimensions (reported in the inset)
and we have changed the diameter of the circular wave-
guide.

1V. CONCLUSION

We have presented an elegant analytical solution
for the efficient CAD of junctions between a circular
waveguide and an elliptical waveguide of larger cross-
section. The coupling coefficients are evaluated by a
single term expression which does not require any sum-
mation, thus avoiding possible problems of relative
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Fig. 6. Return Loss for three different discontinuities between
elliptical and circular waveguides. In this graphic we have
considered as fixed the ellipse geometrical dimensions and
we have changed the diameter of the circular waveguide.
Geometrical dimensions are expressed in mm.

convergence. Computed results have been compared
with published data and with other data obtained by
numerical integration; in all cases an almost perfect
agreement is observed. However, the code based on
the analytical expression of the coupling coefficients
has proven to be, for a typical case, about 40 times
faster than the code based on the numerical evalua-
tion of the coupling integrals.
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